GET it digital

Modul 1: Elektrische Grundgrößen

Stand: 23. Oktober 2025

Lizenz

Weiternutzung als OER ausdrücklich erlaubt: Dieses Werk und dessen Inhalte sind lizenziert unter CC BY 4.0. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. Nennung gemäß TULLU-Regel bitte wie folgt: "GET it digital Modul 1: Elektrische Grundgrößen" von H. Bode Lizenz: CC BY 4.0.

Der Lizenzvertrag ist hier abrufbar:

https://creativecommons.org/licenses/by/4.0/deed.de

Das Werk ist online verfügbar unter:

https://getit digital.uni-wuppertal.de/module/modul-1-elektrische-grund groessen

Lernziele: Beschreibung physikalischer Größen

Lernziele: Beschreibung physikalischer Größen

Die Studierenden können

- physikalische Größen mit Maßzahl und Maßeinheit angeben
- ▶ die sieben SI-Basiseinheiten sowie die davon abgeleiteten Einheiten nutzen sowie ihren jeweiligen Größen zuordnen
- ➤ Zahlenwerte mit Hilfe von Zehnerpotenzen sowie deren Bezeichnung angeben und ineinander umrechnen

Das SI-Einheitensystem

SI-Größe	Formelzeichen	Einheit	Basis
Zeit	t	Sekunde, s	$\Delta \nu$
Länge	ℓ	Meter, m	c, s
Masse	m	Kilogramm, kg	h, s, m
Stromstärke	I	Ampere, A	e, s
Temperatur	T	Kelvin, K	$k_{\rm B}, { m s, m, kg}$
Stoffmenge	n	Mol, mol $N_{ m A}$	
Lichtstärke	I_v	Candela, cd	$K_{\rm cd}, { m s, m, kg}$

Tabelle: SI-Einheiten und ihre Basisgrößen

Eine Sekunde ist das 9.192.631.770-fache der Periodendauer des Hyperfeinstrukturübergangs Δv im Cäsium-Atom ^{133}Cs .

 $\Delta \nu = 9.192.631.770~{
m Hz}~$ (Hyperfeinstrukturübergang $^{133}{
m Cs}$) Ein Meter ist die Länge der Strecke, die das Licht im Vakuum während der Dauer von $t=\frac{1}{299.792.458}~{
m s}$ zurücklegt.

Abgeleitete SI-Einheiten

Größe	Formel	Einheit	Basiseinheit
Kraft	F	Newton, N	$1~{\sf N}=1~{\sf kg}~{\sf m/s}^2$
Energie	Е	Joule, J	$1~\mathrm{J}=1~\mathrm{Ws}=1~\mathrm{Nm}=1~\mathrm{kg}~\mathrm{m}^2/\mathrm{s}^2$
Leistung	Р	Watt, W	$1~\mathrm{W}=1~\mathrm{J/s}=1~\mathrm{kg}~\mathrm{m}^2/\mathrm{s}^3$
Spannung	U	Volt, V	$\left egin{array}{ll} 1\ V = 1\ W/A = 1\ Nm/As = 1\ kg\ m^2/s^3A \end{array} ight $
Ladung	Q	Coulomb, C	1 C = 1 As
Widerstand	R	Ohm, Ω	$1~\Omega=1~ extsf{V/A}=1~ extsf{kg}~ extsf{m}^2/ extsf{s}^3 extsf{A}^2$
Kapazität	С	Farad, F	$1~F = 1~As/V = 1~s^4A^2/kg~m^2$
Induktivität	L	Henry, H	$1~\mathrm{H} = 1~\mathrm{Vs/A} = 1~\mathrm{kg}~\mathrm{m}^2/\mathrm{s}^2\mathrm{A}^2$
magn. Fluss	Φ	Weber, Wb	$1~\mathrm{Wb} = 1~\mathrm{Vs} = 1~\mathrm{kg}~\mathrm{m}^2/\mathrm{s}^2\mathrm{A}$
Flussdichte	В	Tesla, T	$1 T = 1 Vs/m^2 = 1 kg/s^2 A$

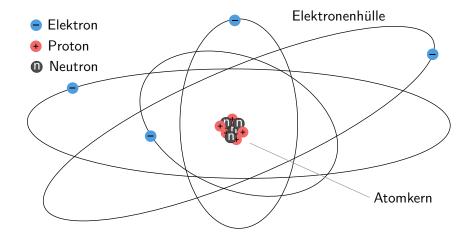
Tabelle: Größen und ihre Basiseinheiten

Kraft ist Masse mal Beschleunigung: $F=m\cdot a$ Oft vergleichbar mit Arbeit, wichtig für Energieerhaltung, Einheit auch Wattsekunde Leistung ist Arbeit pro Zeit "Stärke"einer Spannungsquelle - Analog zum Druck in einer Leitung Menge an freien Elementarladungen "Reibung" von elektrischem Strom Fähigkeit, Ladungen zu

Zehnerpotenzen

Bezeichnung	Potenz	Potenz	Bezeichnung
Dezi, d	10^{-1}	10^{1}	Deka, da
Zenti, c	10^{-2}	10^{2}	Hekto, h
Milli, m	10^{-3}	10^{3}	Kilo, k
Mikro, μ	10^{-6}	10^{6}	Mega, M
Nano, n	10^{-9}	10^{9}	Giga, G
Piko, p	10^{-12}	10^{12}	Tera, T
Femto, f	10^{-15}	10^{15}	Peta, P
Atto, a	10^{-18}	10^{18}	Exa, E

$$\begin{split} 1\,\mathrm{m} &= 100 \cdot 10^{-2}\,\mathrm{m} = 100\,\mathrm{cm} \\ 1\,\mathrm{m}^2 &= 100^2 \cdot (10^{-2}\,\mathrm{m})^2 = 10.000\,\mathrm{cm}^2 \\ 1\,\mathrm{m}^3 &= 100^3 \cdot (10^{-2}\,\mathrm{m})^3 = 1.000.000\,\mathrm{cm}^3 \end{split}$$

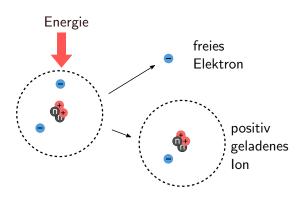

Lernziele: Die Elektrische Ladung

Die Studierenden können

- ▶ die Eigenschaften elektrischer Ladungen sowie im Zusammenhang stehende physikalische Phänomene beschreiben
- elektrische Felder beschreiben und für einfache Ladungsanordnungen berechnen
- mit dem Coulomb´schen Gesetz Kräfte auf Ladungen berechnen

Atomaufbau - Das Bohr´sche Atommodell

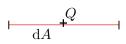
Elektronen und Ionen


Kleinste Ladungseinheit ist die Elementarladung:

$$e = 1.6 \cdot 10^{-19} \,\mathrm{C}$$
 (Naturkonstante!)

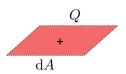
Merke:
$$Q=\pm n\cdot e$$

mit
$$n = 1, 2, 3,...$$


$$[Q] = 1 \operatorname{Coulomb} = 1 \operatorname{C} = 1 \operatorname{As}$$

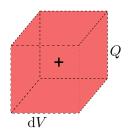
Freie Elektronen als kleinste, leichteste und beweglichste Ladungsträger bedeutsam!

Ladungsdichten


Linienladung

$$\lambda = \lim_{l \to 0} \frac{\Delta Q}{\Delta l} = \frac{\mathrm{d}Q}{\mathrm{d}l}$$

$$Q = \int_{l} \lambda \, \mathrm{d}l$$


Flächenladung

$$\sigma = \lim_{A \to 0} \frac{\Delta Q}{\Delta A} = \frac{\mathrm{d}Q}{\mathrm{d}A}$$

$$Q = \iint_A \sigma \, \mathrm{d}A$$

Raumladung

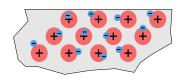
$$\rho = \lim_{V \to 0} \frac{\Delta Q}{\Delta V} = \frac{\mathrm{d}Q}{\mathrm{d}V}$$

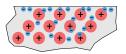
$$Q = \iiint_{V} \rho \, \mathrm{d}V$$

Elektrische Leiter - Metalle

Atomanordnung in **Gitterstruktur**, äußere Elektronen nahezu frei beweglich → verleiht elektrisch leitende Eigenschaften

Summe Elektronen $\widehat{=}$ Summe Protonen

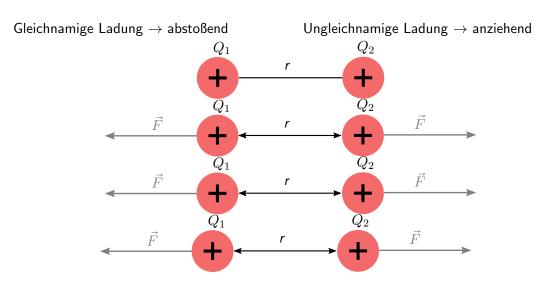

 $\rightarrow \mathsf{elektrisch} \ \mathsf{neutral}$


Hinzuführen von Elektronen

ightarrow negativ geladen

Entziehen von Elektronen

 \rightarrow positiv geladen



Das Coulombsche Gesetz

Ladungen üben Kräfte aufeinander aus.

Lernziele: Das elektrische Feld

Die Studierenden

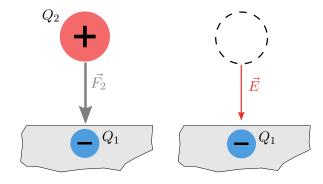
- entwickeln ein "Gefühl" für elektrische Felder
- elektrische Felder beschreiben und für einfache Ladungsanordnungen berechnen
- das Verhalten elektrischer Felder an Leitern charakterisieren

Charakterisierung des elektrischen Feldes

Elektrisches Feld \vec{E} definiert durch:

Größe (in Newton)

Richtung


einer Kraft $ec{F}_{\mathrm{E}}$ auf pos. Probeladung

Charakterisiert durch Feldlinien

 \rightarrow Vektorfeld

Nachteil:

Feldstärke unabhängig von Probeladung

$$\vec{E_1} = \frac{\vec{F_2}}{Q_2}$$

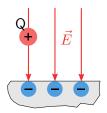
$$\vec{E_1} = \frac{\vec{F_2}}{Q_2} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2} \cdot \frac{1}{Q_2} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1}{r^2}$$

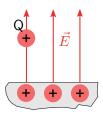
$$[E] = \frac{N}{C} = \frac{V}{m}$$

Elektrische Leiter und elektrostatische Felder I

Feldlinien beginnen und enden immer auf Ladungen (oft Leiteroberflächen).

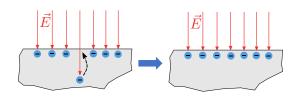
Elektronenüberschuss:


- \rightarrow Pos. Probeladung wird angezogen
- → Feldlinien zeigen zum Leiter


Elektronenmangel:

- \rightarrow Pos. Probeladung wird abgestoßen
- → Feldlinien zeigen vom Leiter weg

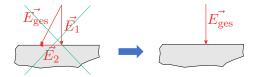
In Leitern verschwindet das elektrostatische Feld



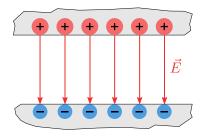
Leiter und elektrostatische Felder II

Bewegliche Ladungsträger:

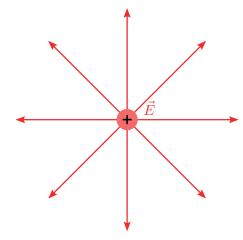
- \rightarrow Leiteroberfläche
- \rightarrow Elektrostatisches Feld wird kompensiert



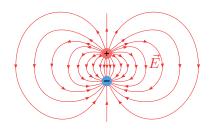
Vektorielle Zerlegung von $ec{E}$


 $\rightarrow \ \, \text{Horizontale Komponente elimieniert}$

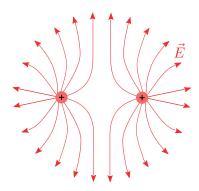
Merke:


Elektrische Feldlinien stehen senkrecht auf Leitern

Beispiele elektrischer Felder I



Elektrisches Homogenfeld zwischen zwei Leiterplatten



Radialfeld einer positiven Punktladung

Beispiele elektrischer Felder II

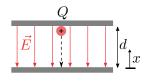
Elektrisches Feld sich anziehender Punktladungen

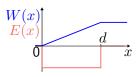
Elektrisches Feld sich abstoßender Punktladungen

Lernziele: Das elektrische Potential

Lernziele: Das elektrische Potential

Die Studierenden können

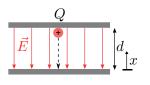

- Verschiebearbeit von Ladungen im elektrischen Feld berechnen
- ► Äquipotentialflächen bestimmen und einzeichnen
- lelektrische Spannungen aus gegebenen Feldgrößen bestimmen

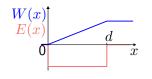

Arbeit im elektrischen Feld

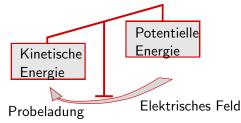
Arbeit zur Bewegung von Ladungen im E-Feld erforderlich

Vorzeichen betrachterabhängig, hier aus Erzeugersicht:

Negative Arbeit \rightarrow Erhöhung potentieller Energie im System




$$W = \int_{d}^{0} \vec{F} d\vec{x} = Q \int_{d}^{0} \vec{E} \cdot d\vec{x}$$
$$\text{mit } \vec{E} = \frac{\vec{F}}{Q}$$
$$W = -Q \cdot E \int_{d}^{0} dx = -Q \cdot E [x]_{d}^{0}$$
$$W = -Q \cdot E (0 - d) = Q \cdot E \cdot d$$



$$\Delta W = Q \cdot E \cdot \Delta x$$

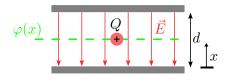
Arbeit im elektrischen Feld II

$$W(x) = Q \cdot E \cdot x + W_0$$

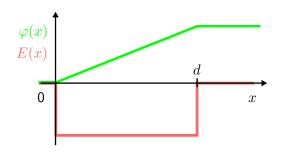
Problem: Abhängigkeit von Probeladung Q

 \rightarrow Normierung von W(x) auf Q als Arbeitspotential

$$\frac{W(x)}{Q} = E \cdot x + \frac{W_0}{Q}$$


Definition des elektrischen Potentials

Normierung der potentiellen Energie:


$$\operatorname{Potential} \varphi = \frac{W}{Q}$$

$$[\varphi] = \text{Volt} = \mathbf{V}$$

Im elektrischen Homogenfeld:

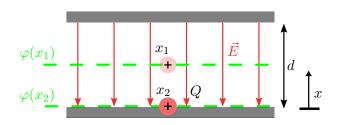
$$\varphi(x) = E \cdot x + \varphi_0$$

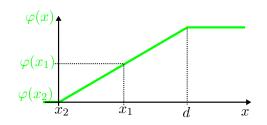
$$E = -\frac{\Delta \varphi}{\Delta x}$$

Bezugspunkt notwendig:

$$\varphi_0 = \varphi(x = 0) = 0$$

Zusammenhang zwischen Arbeit und Potential


Potential nur abhängig von Ortskoordinate x in Feldrichtung.

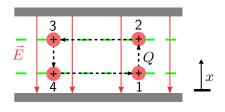

Flächen gleichen Potentials: \rightarrow Äquipotentialflächen

$$W_{12} = Q \cdot (\varphi_1 - \varphi_2)$$

Mit Bezugspotential $\varphi_2 = 0$:

$$W_{12} = Q \cdot (\varphi_1 - 0) = Q \cdot \varphi_1$$

Wirbelfreies Feld


Zunächst Betrachtung der Teilenergien bei einem geschlossenen Umlauf im Homogenfeld.

Die gesamte Energie ergibt sich durch die Aufsummierung der Teilenergien:

$$W_{\text{ges}} = Q \cdot (\varphi_1 - \varphi_2) + Q \cdot (\varphi_2 - \varphi_3)$$

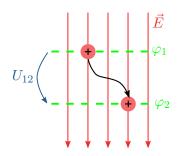
$$+ Q \cdot (\varphi_3 - \varphi_4) + Q \cdot (\varphi_4 - \varphi_1)$$

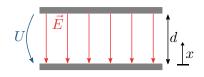
$$W_{\text{ges}} = Q \cdot (\varphi_1 - \varphi_2 + \varphi_2 - \varphi_3 + \varphi_3 - \varphi_4 + \varphi_4 - \varphi_1)$$
$$W_{\text{ges}} = Q \cdot 0 = 0$$

Energie im elektrischen Feld ist nur von Anfangsund Endpunkt und nicht vom Weg abhängig. Es ist ein "wirbelfreies" Feld.

Kennzeichen:

- keine geschlossenen Feldlinien
- Feldlinien beginnen und enden auf Ladungen

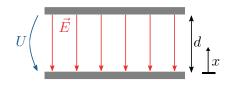

Definition der elektrischen Spannung


Potentialdifferenz bestimmt nutzbare Energie \rightarrow **Spannung** U:

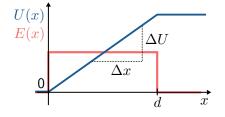
$$U_{12} = (\varphi_1 - \varphi_2)$$

$$[U] = \text{Volt} = \text{V}$$

Indexreihenfolge: Start- und Zielpunkt

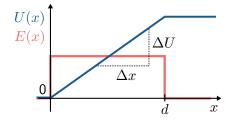

Zusammenhang zwischen Spannung und Feldstärke I

Im Homogenfeld:

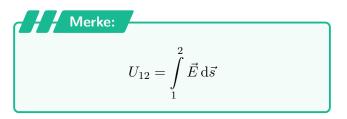

$$\varphi(x) = E \cdot x$$

$$U = \varphi(x = d) - \varphi(x = 0)$$

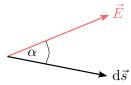
$$U = E \cdot d - E \cdot 0$$



Merke: $U = E \cdot d$ $E = \frac{U}{d}$



Zusammenhang zwischen Spannung und Feldstärke II


Spannung $\widehat{=}$ aufintegrierter Feldstärke:

Allgemeines Feld:

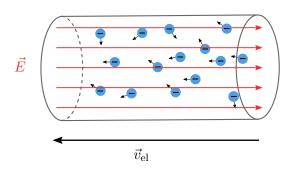
Wiederholung Skalarprodukt:

$$\vec{E} \cdot d\vec{s} = E ds \cdot \cos(\alpha)$$

Lernziele: Die Elektrische Stromstärke

Lernziele: Die Elektrische Stromstärke

Die Studierenden können


- die Begriffe der elektrischen Stromstärke und der elektrischen Stromdichte erläutern und anwenden
- die elektrische Stromstärke sowie die elektrische Stromdichte in einfachen Anordnungen berechnen
- die Driftgeschwindigkeit von Elektronen in einfachen Anordnungen bestimmen

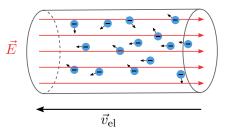
Das elektrische Strömungsfeld

Strömungsfeld: **gerichtete** Bewegung von Teilchen

Stationäres Stromungsfeld: **zeitlich konstanter** Teilchenstrom

Stationäres elektrisches Strömungsfeld: strömende Teilchen **elektrische** Ladungsträger

Elektrischer Strom I


Elektrischer Strom: gerichtete Driftbewegung von Ladungsträgern

Feldstärkeabhängige Driftgeschwindigkeit $\vec{v}_{\rm el}$:

$$\vec{v}_{\rm el} = -b_{\rm el} \cdot \vec{E}$$

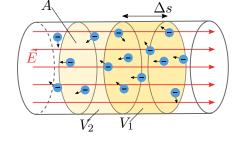
mit:

 $ec{v}_{\rm el} =$ Driftgeschwindigkeit der Elektronen in m/s $b_{\rm el} =$ Elektronenbeweglichkeit in cm^2/Vs

Elektrischer Strom II

Ladungsträgertransport innerhalb eines Leiters:

$$\Delta Q = e \cdot N_{\rm el}$$

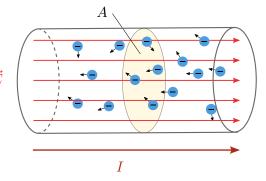

$$\Delta Q = e \cdot n_{\rm el} \cdot V_1$$

$$\Delta Q = e \cdot n_{\rm el} \cdot b_{\rm el} \cdot E \cdot \Delta t \cdot A$$

mit:

 $N_{
m el}=$ Anzahl Ladungsträger in betrachtetem Volumen

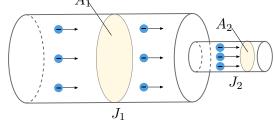
 $n_{\rm el} = {\sf Ladungstr\"{a}gerdichte}$ in $1/{
m m}^3$



Definition der elektrischen Stromstärke

Stromstärke I : Ladungsmenge ΔQ in Δt durch Leiter

 $ec{E}$


$$[I] = Ampere = A$$

$$I = e \cdot n_{\rm el} \cdot b_{\rm el} \cdot E \cdot A$$

Definition der elektrischen Stromdichte

Stromstärke J : Stromstärke ΔI pro Leiterquerschnitt ΔA

$$[J] = \frac{A}{m^2}$$

$$J_1 \cdot A_1 = J_2 \cdot A_2 = I$$