GET it digital

Modul 2: Energie und Leistung

Stand: 23. Oktober 2025

Lizenz

Weiternutzung als OER ausdrücklich erlaubt: Dieses Werk und dessen Inhalte sind lizenziert unter CC BY 4.0. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. Nennung gemäß TULLU-Regel bitte wie folgt: "GET it digital Modul 2: Energie und Leistung" von M. Hillgärtner, S. Micun, F. Stergianos Lizenz: CC BY 4.0.

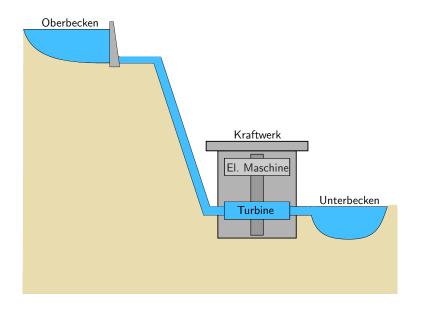
Der Lizenzvertrag ist hier abrufbar:

https://creativecommons.org/licenses/by/4.0/deed.de

Das Werk ist online verfügbar unter:

https://getitdigital.uni-wuppertal.de/module/modul-2-energie-und-leistung

Lernziele: Unterschied von Energie, Arbeit, Leistung

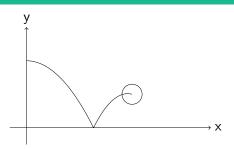


Lernziele: Energie und Leistung

Die Studierenden

- können Energie, elektrische Arbeit, Leistung und Wirkungsgrad benennen.
- verstehen, wie Energie in elektrischen Systemen umgewandelt und genutzt wird.
- können die elektrische Arbeit, Leistung und den Wirkungsgrad berechnen.
- können die Effizienz von Energieumwandlungssystemen analysieren.

Pumpspeicherkraftwerk



Merksatz:

Energie kann gespeichert werden, Arbeit wird verrichtet.

Der Energieerhaltungssatz

Merke:

Energie ist eine Erhaltungsgröße.

Energie kann weder erzeugt noch vernichtet werden.

Energie kann lediglich die Energieform ändern.

$$E = F \cdot s$$

Lernziele: Die Elektrische Ladung

Lernziele: Die Elektrische Ladung

Die Studierenden können

- die Eigenschaften elektrischer Ladungen sowie im Zusammenhang stehende physikalische Phänomene beschreiben
- elektrische Felder beschreiben und für einfache Ladungsanordnungen berechnen
- mit dem Coulomb´schen Gesetz Kräfte auf Ladungen berechnen

Verschiedene Energieformen

Merke: Die Energieformen auf einen Blick

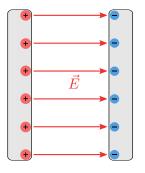
- Kinetische Energie (Bewegungsenergie)
- Potenzielle Energie (Lageenergie)
- Thermische Energie (Wärmeenergie)
- Elektrische Energie
- Chemische Energie
- Kernenergie
- Strahlungsenergie

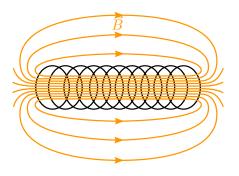
Die Energie

Wird im allgemeinen über die aufintegrierte Strecke zwischen zwei Punkten P_1 und P_2 über eine Kraft \vec{F} definiert

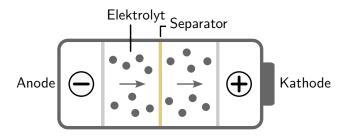
$$E = \int\limits_{P_1}^{P_2} ec{F} \cdot \mathrm{d}ec{s} \qquad [E] = 1 \; \mathsf{Joule} = 1 \; \mathsf{J} = 1 \; \mathsf{Nm}$$

Die elektrische Energie


lacktriangle Eine elektrische Kraft $ec{F}_{\mathrm{el}}$ liegt vor, wenn eine Ladung Q einem elektrischen Feld $ec{E}$ ausgesetzt ist.


$$\vec{F}_{\rm el} = Q \cdot \vec{E}$$

$$E_{
m el} = Q \cdot \int\limits_{P_1}^{P_2} ec{E} \cdot \mathrm{d}ec{s}$$


$$E_{\rm el} = Q \cdot U \qquad [E] = 1 \ \mathsf{Joule} = 1 \ \mathsf{J} = 1 \ \mathsf{Ws}$$

Elektrische Energiespeicher

Chemischer Energiespeicher

Die Arbeit

► Arbeit ist die änderung der Energieform

$$W=\Delta E \qquad [W]=1$$
 Joule $=1$ J $=1$ Nm $W=-\int\limits_{P_1}^{P_2} \vec{F}\cdot\mathrm{d}\vec{s}$

Die Arbeit

Das Vorzeichen der Arbeit ist kontextabhängig: Die Arbeit ist positiv, wenn Energie einem System hinzugefügt wird und negativ, wenn Energie einem System entnommen wird.

Die elektrische Arbeit

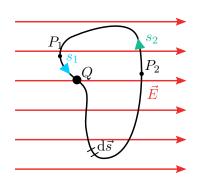
$$\vec{E} = \frac{\vec{F}_{\rm el}}{Q} \quad \Rightarrow \quad \vec{F}_{\rm el} = Q \cdot \vec{E}$$

$$W_{\rm el} = \int_{P_1}^{P_2} -Q \cdot \vec{E} \cdot \mathrm{d}\vec{s} \quad \Rightarrow \quad W_{\rm el} = -Q \int_{P_1}^{P_2} \vec{E} \cdot \mathrm{d}\vec{s}$$

$$W_{\rm el} = Q \int_{P_1}^{P_2} \vec{E} \cdot \mathrm{d}\vec{s} \quad \Rightarrow \quad W_{\rm el} = Q \cdot U$$

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t} \quad \Rightarrow \quad Q = I \cdot t$$

Die elektrische Arbeit


Eingesetzt ergibt dies nun folgenden Ausdruck

$$W_{
m el} = U \cdot I \cdot t \qquad [W_{
m el}] = 1 \; {
m Joule} = 1 \; {
m J} = 1 \; {
m Ws}$$

Merke:

- Für das Verrichten einer Arbeit wird immer eine Zeitdauer benötigt.
- Ein Momentanzustand ist immer der Ist-Zustand der Energieverteilung.
- ▶ Das Verrichten elektrischer Arbeit bedarf immer eines Stromflusses.

Wegintegral der elektrischen Arbeit

$$|W_{\rm el}| = \left| -Q \cdot \int\limits_{s_1} \vec{E} \cdot \mathrm{d}\vec{s} \, \right| = \left| -Q \cdot \int\limits_{s_2} \vec{E} \cdot \mathrm{d}\vec{s} \, \right|$$

$$W_{\rm el} = -Q \cdot \int\limits_{s_1} \vec{E} \cdot \mathrm{d}\vec{s} - Q \cdot \int\limits_{s_2} \vec{E} \cdot \mathrm{d}\vec{s} = -Q \cdot \oint\limits_{s} \vec{E} \cdot \mathrm{d}\vec{s} = 0 \to \oint\limits_{s} \vec{E} \cdot \mathrm{d}\vec{s} = 0$$

Wegintegral der elektrischen Arbeit

Das Ringintegral einer Ladung in einem statischen elektrischen Feld ist unabhängig von der Ladungsmenge immer gleich Null.

Die Leistung

$$W = \int P \cdot \mathrm{d}t$$

Durch Umstellung der Formel ergibt sich, dass die Leistung P die Änderung der Arbeit über die Zeit ist.

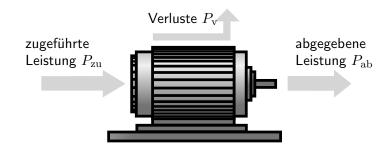
$$P = \frac{\mathrm{d}W}{\mathrm{d}t}$$

Die Leistung

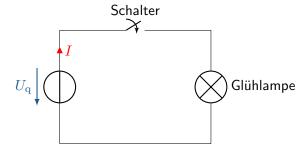
Bei gleichbleibender Arbeit über die Zeit ergibt sich der folgende Ausdruck:

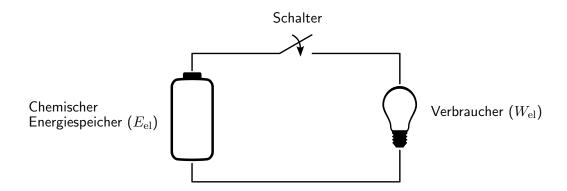
$$P = \frac{W_{\mathrm{el}}}{t} = \frac{U \cdot I \cdot \mathcal{X}}{\mathcal{X}} = U \cdot I \qquad [P] = 1 \text{ Watt} = 1 \text{ W}$$

Verschiedene Leistungsarten


Arten	Potentialgröße	Flussgröße	Formel
elektrisch	Spannung (U)	Strom (I)	$P_{el} = U \cdot I$
translatorisch	$Kraft\;(F)$	Geschwindigkeit (v)	$P_{tr} = F \cdot v$
rotatorisch	Moment (M)	Winkelgeschw. (ω)	$P_{rot} = M \cdot \omega$
thermisch	Temperaturdiff. (ΔT)	Wärmedurchgang $(k\cdot A)$	$P_{th} = \Delta T \cdot k \cdot A$
fluidisch	Druck (p)	Volumenstrom (\dot{V})	$P_{\mathrm{f_l}} = p \cdot \dot{V}$

Merksatz: Leistung


Elektrische Arbeit misst die übertragene Energie, während elektrische Leistung die Übertragungsgeschwindigkeit angibt.


Der Wirkungsgrad beschreibt das Verhältnis von abgegebener zu zugeführter Leistung

$$\eta = \frac{P_{\rm ab}}{P_{\rm zu}} \cdot 100\%$$

