GET it digital

Modul 3: Elektrische Bauelemente

Stand: 23. Oktober 2025

Lizenz

Weiternutzung als OER ausdrücklich erlaubt: Dieses Werk und dessen Inhalte sind lizenziert unter CC BY 4.0. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. Nennung gemäß TULLU-Regel bitte wie folgt: "GET it digital Modul 3: Elektrische Bauelemente" von M. Hillgärtner, S. Micun, F. Stergianos Lizenz: CC BY 4.0.

Der Lizenzvertrag ist hier abrufbar:

https://creative commons.org/licenses/by/4.0/deed.de

Das Werk ist online verfügbar unter:

https://getitdigital.uni-wuppertal.de/module/modul-3-elektrische-bauelemente

Elektrische Bauelemente

Lernziele: Leitfähigkeit und Widerstand

Lernzie

Lernziele: Leitfähigkeit und Widerstand

Die Studierenden

- kennen das elektrische Bauelement Widerstand.
- können die unterschiedlichen Bauteilausführungen von Widerständen erklären.
- können anhand des spezifischen Widerstand ρ oder des spezifischen Leitwertes κ Berechnungen durchführen.
- können die Unterschiede in der Leitfähigkeit verschiedener Materialien basierend auf deren atomarer Struktur und Temperatur analysieren.

Leitfähigkeit und Widerstand

Unterschiedliche Bauteilausführungen von Widerständen

Aus Modul 1 ist die Definition der Stromdichte J und des Stromes I bekannt. Durch Einsetzen der Formeln 2 und 3 in Formel 1 ergibt sich die Formel 4:

$$J = \frac{\Delta I}{\Delta A}$$

$$I = \frac{\Delta Q}{\Delta t}$$

$$\Delta V = \Delta A \cdot \Delta x \Leftrightarrow \Delta A = \frac{\Delta V}{\Delta x}$$

$$J = \frac{\Delta Q \cdot \Delta x}{\Delta t \cdot \Delta V}$$

Durch Einsetzen der aus Modul 1 bekannten Driftgeschwindigkeit v_{el} und der Raumladungsdichte ρ in die Formel 4, ergibt sich die Formel 7 für die Stromdichte.

$$v_{el} = \frac{\Delta x}{\Delta t}$$

$$\rho = \frac{\Delta x}{\Delta V}$$

$$\vec{J} = \rho \cdot \vec{v_{el}}$$

Da die Geschwindigkeit immer einen Betrag und eine Richtung hat, ist die Stromdichte ebenfalls ein Vektor.

Die Driftgeschwindigkeit $\vec{v_{el}}$ der freien Ladungsträger verhält sich proportional zum elektrischen Feld \vec{E} , jedoch in entgegengesetzter Richtung. Der Proportionalitätsfaktor wird auch als Elektronenbeweglichkeit μ_e bezeichnet.

$$\vec{v_{el}} = -\mu_e \cdot \vec{E}$$

Die Raumladungsdichte ρ setzt sich aus der Elementarladung e^- und der Ladungsträgerdichte n_e , zusammen. Aufgrund der negativen Ladung von Elektronen, ergibt sich ein negatives Vorzeichen.

$$\rho = -n_e \cdot e^-$$

Das Einsetzen von $\vec{v_{el}}$ und ρ in die Formel 7 ergibt den folgenden Ausdruck:

$$\vec{J} = (-n_e \cdot e^-) \cdot (-\mu_e \cdot \vec{E})$$

Die Minuszeichen heben sich auf und es ergibt sich folgende Formel für die Stromdichte \vec{J} :

$$\vec{J} = n_e \cdot \mu_e \cdot e^- \vec{E}$$

Die materialabhängigen Komponenten n_e und μ_e sowie die Naturkonstante e^- ergeben multipliziert die spezifische Leitfähigkeit κ :

$$\kappa = n_e \cdot \mu_e \cdot e^-$$

Zusammengefasst ergibt diese Darstellung die Beschreibung des ohmschen Gesetzes:

$$\vec{J} = \kappa \cdot \vec{E} \leftrightarrow \vec{E} = \frac{\vec{J}}{\kappa}$$

$$U_{12} = \int_{P_1}^{P_2} \vec{E} \, \mathrm{d}\vec{s}$$

Da das elektrische Feld parallel zur Leitungslänge verläuft, ergibt sich das Skalarprodukt:

$$U_{12} = \int_{x=0}^{x=l} \vec{E} \, \mathrm{d}\vec{x}$$

Durch Einsetzen der umgestellten Formel 13 nach \vec{E} , folgt:

$$U_{12} = \int_{0}^{l} \frac{J}{\kappa} \mathrm{d}x$$

Da es sich um ein homogenes Material handelt ist das κ konstant.

$$U_{12} = \frac{1}{\kappa} \cdot \int_{0}^{l} J \mathrm{d}x$$

Die folgende Formel für die Stromdichte J ist aus Modul 1 bekannt:

$$J = \frac{I}{A}$$

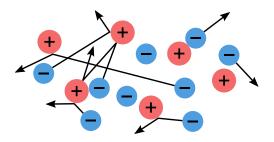
Duch Einsetzen der Formel ergibt sich folgender Ausdruck:

$$U_{12} = \frac{1}{\kappa} \cdot \int_{0}^{l} \frac{I}{A} \mathrm{d}x$$

Da die Querschnittsfläche A ebenfalls konstant ist, kann das Integral aufgelöst werden:

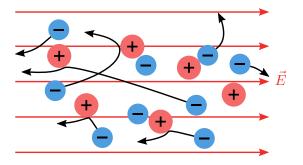
$$U_{12} = \frac{1}{\kappa} \cdot \frac{I}{A} \cdot l$$

Durch Umstellung ergibt sich:


$$U_{12} = \frac{l}{A \cdot \kappa} \cdot I$$

Da $\frac{l}{A \cdot \kappa}$ der elektrische Widerstand ist, ergibt sich folgende Vereinfachung:

$$U = R \cdot I$$


Driftverhalten von Elektronen in Leitern

 Ungerichte Bewegung freier Elektronen (blau) zwischen positiv geladenen Atomrümpfen (rot)

Driftverhalten von Elektronen in Leitern

lackbox Gerichtete Bewegung von Elektronen entgegen der Richtung des elektischen Feldes $ec{E}$

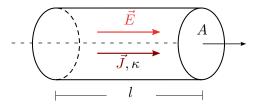
Mathematische Zusammenhänge der Leitfähigkeit

$$[\kappa] = 1 \; \frac{\text{Siemens}}{\text{meter}} = 1 \; \frac{\text{S}}{\text{m}} = 1 \; \frac{1}{\Omega \cdot \text{m}}$$

$$\kappa = \frac{1}{\rho_{\text{R}}}$$

$$\rho_{\text{R}} = \rho_{20^{\circ}\text{C}} \cdot (1 + \alpha(\vartheta - 20^{\circ}\text{C}))$$

Spezifische Leitfähigkeiten und Temperaturkoeffizienten


Material	$\textbf{Spezifische Leitf\"{a}higkeit} \; [\kappa] = S/m$	Temperaturkoeffizient $[\alpha] = 1/K$	
Silber	$6.1 \cdot 10^{7}$	0.0038	
Kupfer	$5.8 \cdot 10^{7}$	0.0038	
Gold	$4.5\cdot 10^7$	0.0034	
Aluminium	$3.7 \cdot 10^{7}$	0.004	
Eisen	$1.0\cdot 10^7$	0.0065	
Graphit	$3 \cdot 10^{6}$	-0.0002	
Silizium (dotiert)	$1 - 10^6$	-0.075	
Leitungswasser	$5.0 \cdot 10^{-3}$	-	
Luft	$4.0 \cdot 10^{-15}$	-	

Der Leitwert

$$[G]=1\,\mathrm{Siemens}=1\,\mathrm{S}=1\,\,\frac{1}{\Omega}$$

$$G=\frac{1}{R}$$

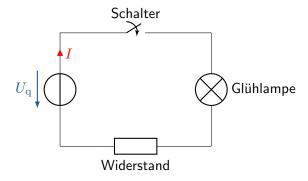
Geometrische Eigenschaften

- Länge *l*
- ightharpoonup Querschnittsfläche A
- ightharpoonup Spezifische Leitfähigkeit κ

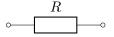
Geometrische Eigenschaften

Allgemeine Formel für den Widerstand in Bezug auf die Materialeigenschaften

$$[R]=1\,\mathsf{Ohm}=1\,\Omega$$

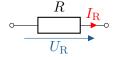

$$R = \rho_{\rm R} \cdot \frac{l}{A}$$

 $ho_{
m R}$: spezifischer Widerstand des Materials $(\Omega {
m m})$

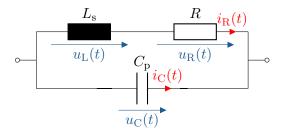

l: Länge des Materials (m)

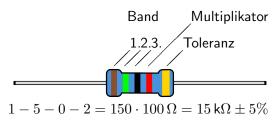
 $A: \mathsf{Querschnittsfläche\ des\ Materials\ }(\mathsf{m}^2)$

Einführung in die Darstellung von Schaltkreisen

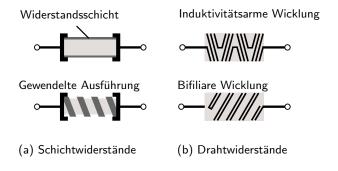


▶ Europäisches (links) und amerikanisches (rechts) Schaltelement für Widerstand



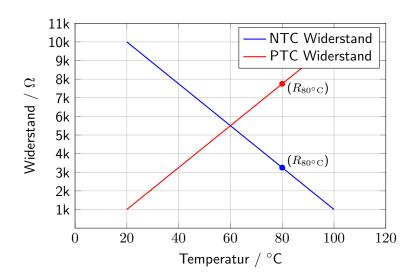

Der idealer Widerstand als Schaltsymbol

lacktriangle Ersatzschaltbild eines realen Widerstands mit $C_{
m p}$ und $L_{
m s}$

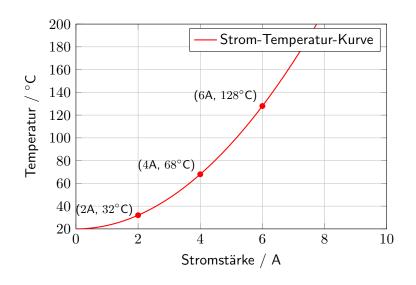


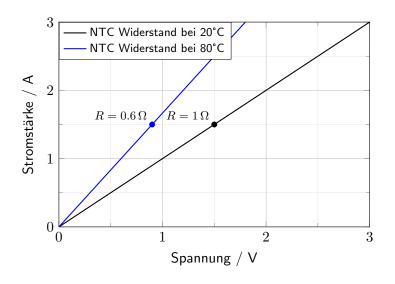
Widerstandsfarbcodierung

Farbe	1. 2. 3. Band	Multiplikator	Toleranz
Schwarz	0	1Ω	-
Braun	1	10Ω	±1%
Rot	2	100Ω	±2%
Orange	3	$1\mathrm{k}\Omega$	-
Gelb	4	$10\mathrm{k}\Omega$	-
Grün	5	100 kΩ	$\pm0.5\%$
Blau	6	$1\mathrm{M}\Omega$	$\pm0.25\%$
Violett	7	$10\mathrm{M}\Omega$	$\pm 0.1 \%$
Grau	8	-	$\pm0.05\%$
Weiß	9	-	-
Gold	-	0.1Ω	±5%
Silber	-	0.01Ω	$\pm10\%$


► Verschiedene Ausführungen von bedrahteten/THT Widerständen

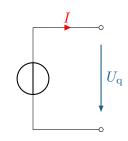



Merksatz: Widerstand als Bauelement



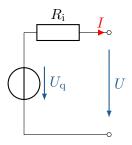
Der Widerstandswert eines Materials ist abhängig von dessen geometrischen und spezifischen Eigenschaften.

Lernziele: Spannungs- und Stromquelle


Lernziele: Spannungs- und Stromquelle

Die Studierenden können

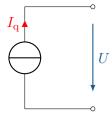
- zwischen Spannungs- und Stromquellen unterscheiden und kennen deren Schaltsymbole.
- reale Spannungs- und Stromquellen modellieren.
- ▶ Beispiele für verschiedene Quellen benennen.


Spannungsquelle

ldeale Spannungsquelle, liefert stets eine konstante Spannung $U_{\rm q}$, unabhängig von der Last oder dem Strom

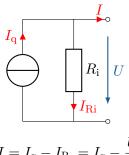
Spannungsquelle

lacktriangle Reelle Spannungsquelle. Die Spannung $U_{
m q}$ wird durch den Innenwiderstand $R_{
m i}$ beeinflusst und ist an den Ausgangsklemmen dadurch geringer


Merksatz: Spannungsquelle

Merke:

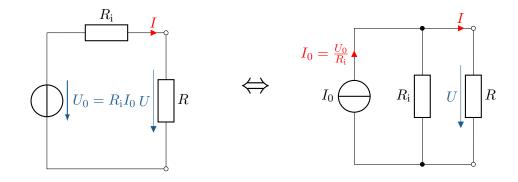
- Eine Spannungsquelle darf nie kurzgeschlossen werden!
- ▶ Bei Spannungsquellen stellt sich immer der Strom ein.


Stromquelle

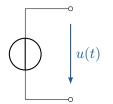
► Ideale Stromquelle

Stromquelle

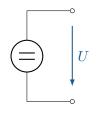
Reelle Stromquelle mit Innenwiderstand. Der Strom $I_{\rm q}$ wird durch den Innenwiderstand $R_{\rm i}$ beeinflusst und ist an den Ausgangsklemmen geringer

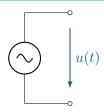

$$I = I_{\mathrm{q}} - I_{\mathrm{R_i}} = I_{\mathrm{q}} - rac{U}{R_{\mathrm{i}}}$$

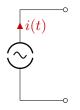
Merksatz: Stromquelle

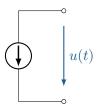

Merke:

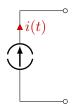
- Eine Stromquelle darf nie im Leerlauf betrieben werden!
- ▶ Bei Stromquellen stellt sich immer die Spannung ein.

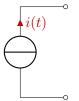

Umwandlung einer Spannungsquelle in eine Stromquelle


Verschiedene Spannungs- und Stromquellen


Allgemeine Spannungsquelle


Gleichspannungsquelle


Wechselspannungsquelle


Wechselstromquelle

Zeitlich beliebig veränderliche Spannungsquelle

Zeitlich beliebig veränderliche Stromquelle

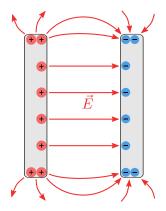
Allgemeine Stromquelle

Lernziele: Kapazität und Kondensator

Lernziele: Kapazität und Kondensator

Die Studierenden

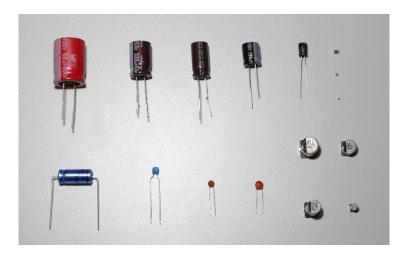
- können zwischen Kapazität und Kondensator differenzieren.
- kennen die wichtigsten Parameter rund um den Kondensator und die Kapazität.
- können die Kapazität eines Kondensators berechnen.


Die elektrische Kapazität

Der ideale Plattenkondensator

Die elektrische Kapazität

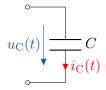
Der reale Plattenkondensator


Die elektrische Kapazität

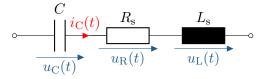
$$[C]=1\, {\sf Farad}=1\, {\sf F}=1\, rac{\sf C}{\sf V}=1\, rac{\sf As}{\sf V}$$

$$C=rac{Q}{U}$$

$$Q = C \cdot U \quad \Rightarrow \quad C = \frac{Q}{U} = \frac{\varepsilon \cdot \iint \vec{E} \cdot d\vec{A}}{\int \vec{E} d\vec{s}}$$


Der Kondensator als Bauelement

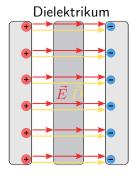
Verschiedene Arten und Bauformen von Kondensatoren



Der Kondensator als Bauelement

Idealer Kondensator

Ersatzschaltbild eines realen Kondensators



Merksatz: Der Kondensator als Bauelement

Der Kondensator ist der verzweifelte Versuch eine Kapazität nachzubilden.

Das Dielektrikum

Das Dielektrikum

► Relative Dielektrizitätszahl verschiedener Materialien

Material	$arepsilon_{ ext{r}}$
Vakuum	1
Luft (bei STP)	1.0006
Kunststoff (PE)	2.25-2.3
Glas	3-10
Keramik	5-300
Silizium	11.7
Tantaloxid	25-30
Wasser	81

Das Dielektrikum

$$[arepsilon] = 1 \, rac{\mathsf{Farad}}{\mathsf{m}} = 1 \, rac{\mathsf{F}}{\mathsf{m}} = 1 \, rac{\mathsf{As}}{\mathsf{Vm}}$$
 $arepsilon = arepsilon_0 \cdot arepsilon_{\mathrm{r}}$

 ε : Dielektrizitätskonstante

 ε_0 : Elektrische Feldkonstante (8.85421878 · 10^{-12})

 $arepsilon_{\mathrm{r}}$: Relative Dielektrizitätszahl

Der Kondensator als Bauelement

$$[C] = 1 \,\mathsf{F}$$

$$C = \frac{\boldsymbol{\varepsilon} \cdot A}{d}$$

A: Querschnittsfläche des Materials (m^2)

d: Abstand der Elektroden (m)

Die elektrische Flussdichte \vec{D}

$$\vec{D} = \boldsymbol{\varepsilon} \cdot \vec{E} + P$$

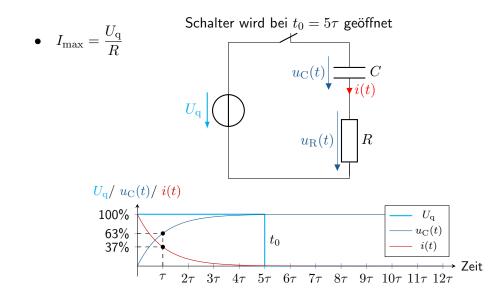
ightharpoonup Im statischen Fall kann die Polarisation P oft vernachlässigt werden

$$[D]=1rac{\mathsf{Coulomb}}{\mathsf{m}^2}=1rac{\mathsf{C}}{\mathsf{m}^2}=1rac{\mathsf{As}}{\mathsf{m}^2}$$

$$\vec{D}=arepsilon\cdot\vec{E}$$

Einführung in die zeitabhängige Vorgänge

$$Q = C \cdot U$$


$$\frac{\mathrm{d}Q}{\mathrm{d}t} = C \cdot \frac{\mathrm{d}U}{\mathrm{d}t}$$

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = i(t)$$

$$i_{\rm c}(t) = C \cdot \frac{\mathrm{d}u_{\rm c}(t)}{\mathrm{d}t}$$

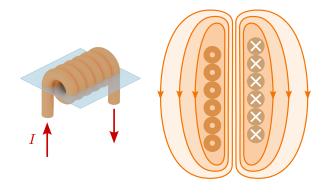
$$u_{\rm c}(t) = \frac{1}{C} \cdot \int i_{\rm c}(t) \mathrm{d}t$$

Schaltverhalten eines Kondensators: Aufladen

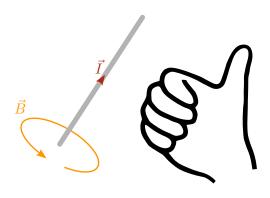
Schaltverhalten eines Kondensators: Entladen

Beispielrechnung Kapazität

- ▶ Ladung auf Platten $Q = \sigma \cdot A = \varepsilon \cdot E \cdot A$
- Kapazität mit $C = \frac{\varepsilon \cdot A}{d}$ berechnen
- Gespeicherte Energie $W = \frac{1}{2} \cdot C \cdot V^2$
- lacktriangle Kapazität zweier Kondensatoren mit verschiedenen $arepsilon_{
 m r}$ über $ec{D}$ berechnen


Lernziele: Induktivität und Spule

Lernziele: Induktivität und Spule


Die Studierenden

- können zwischen Induktivität und Spule differenzieren.
- kennen die wichtigsten Parameter rund um die Induktivität und die Spule.
- können die Induktivität einer Spule berechnen.

Magnetisches Feld einer Zylinderluftspule

Die Rechte-Hand-Regel

Induzierte Spannung

$$U_{\rm i} \sim \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

$$U_{\rm i} = -N \cdot \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

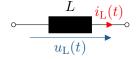
$$U_{\rm i} \sim \frac{\mathrm{d}I}{\mathrm{d}t}$$

$$U_{\rm i} = -L \cdot \frac{\mathrm{d}I}{\mathrm{d}t}$$

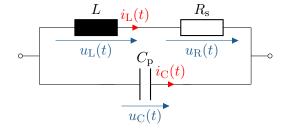
Zeitabhängige Formeln der Induktivität

Spannung über der Induktivität

$$u_{\rm L}(t) = L \cdot \frac{di_{\rm L}(t)}{dt}$$

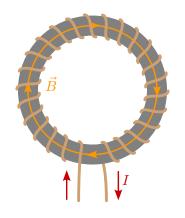

Strom durch die Induktivität

$$i_{\mathrm{L}}(t) = \frac{1}{L} \cdot \int u_{\mathrm{L}}(t) \, dt$$


Die Spule als Bauelteil

Die Induktivität als Schaltugselement

Die Spule als Schaltugselement



Merkesatz: Die Spule als Bauteil

Die Spule ist der verzweifelte Versuch, eine Induktivität nachzubilden.

Die Permeabilität

Die Permeabilität

Material	$\mu_{ m r}$
Supraleiter 1. Art	0
Vakuum	1
Luft (bei STP)	1.00000037
Kupfer	0.999994
Gold	0.999964
Aluminium	1.000022
Eisen	300 - 10000
Ferrit	4 - 15000

Die Permeabilität

$$\mu = \mu_{\rm r} \cdot \mu_0$$
 , $[{\rm H/m}]$

 μ : Permeabilitätskonstante [H/m]

 μ_0 : Magnetische Feldkonstante ($\approx 4\pi \times 10^{-7} \; [{\rm H/m}])$

 $\mu_{
m r}$: Relative Permeabilität des Materials (Einheitenfrei)

Die magnetische Flussdichte

$$B = \frac{\mu \cdot I \cdot N}{l}$$

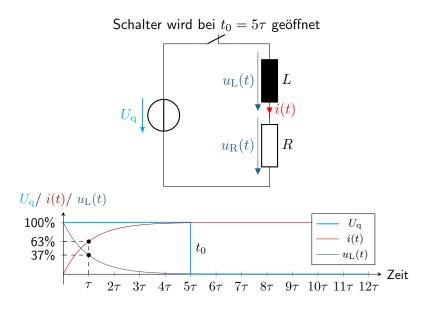
$$[B] = \frac{\mathsf{H}/\mathsf{m} \cdot \mathsf{A} \cdot 1}{\mathsf{m}} = \frac{\mathsf{H} \cdot \mathsf{A}}{\mathsf{m}^2} = \frac{(\mathsf{V} \cdot \mathsf{s} \ / \ \mathsf{A}) \cdot \mathsf{A}}{\mathsf{m}^2} = \frac{\mathsf{V} \cdot \mathsf{s}}{\mathsf{m}^2} = \mathsf{T} \ (\mathsf{Tesla})$$

 μ : Permeabilitätskonstante]

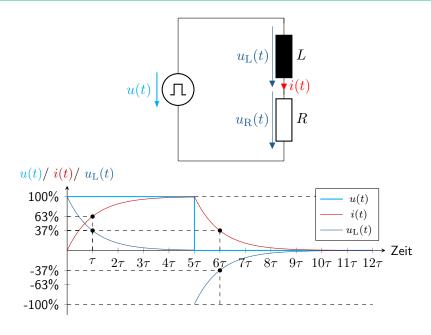
 ${\it I}$: Elektrische Stromstärke

 $N: \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{Windungen}$

l: Länge des Magnetkreises


$$\vec{B} = \mu \cdot \vec{H}$$

Die Induktivität


$$[L] = 1 \, \mathsf{Henry} = 1 \, \mathsf{H} = 1 \, rac{\mathsf{Vs}}{\mathsf{A}}$$

$$L = \frac{\mu \cdot N^2 \cdot A}{l}$$

Schaltverhalten einer Spule: Aufladen

Schaltverhalten einer Spule: Entladen

Beispielrechnung Induktivität

- ▶ Berechnung der Induktivität *L*
- lacktriangle Berechnung der magnetischen Flussdichte $ec{B}$
- ightharpoonup Gespeicherte Energie im Magnetfeld $E_{
 m m}$?