
GET it digital

Modul 4: Grundlegende Gleichstromnetzwerke

Stand: 22. Oktober 2025

Lizenz

Weiternutzung als OER ausdrücklich erlaubt: Dieses Werk und dessen Inhalte sind lizenziert unter CC BY 4.0. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. Nennung gemäß TULLU-Regel bitte wie folgt: "GET it digital Modul 4: Grundlegende Gleichstromnetzwerke" von H. Bode Lizenz: CC BY 4.0.

Der Lizenzvertrag ist hier abrufbar:

https://creativecommons.org/licenses/by/4.0/deed.de

Das Werk ist online verfügbar unter:

https://getitdigital.uni-wuppertal.de/module/modul-4-grundlegende-

gleichstromnetzwerke

Elektrische Netzwerke

Elektrische Netzwerke bestehen aus:

- Zwei- oder Mehrpolen: Elemente mit zwei oder mehreren el. Anschlüssen
- Verbunden durch ideal leitende Verbindungen

Diese können zu Systemen unterschiedlichster Größen geschaltet werden:

- Energieverteilnetze 1000 km Ausdehnung
- Elektronische Schaltungen im Mikrometerbereich (Mikrocontroler)

Symbolbilder

Elektrische Netzwerke

Ziel: Berechnung der elektrischen Größen in einer Schaltung

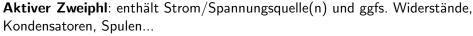
- Vereinfachung der realen Bauteile zu idealen Zweipolen
- ▶ Darstellung der Zweipole durch Ersatzschaltbilder (siehe Tabelle)
 → bilden Grundlage zur mathematischen Berechnung
- Ersatzschaltbild modelliert grundlegendes Verhalten der realen elektrischen Schaltung

Beispiele für Zweipole:

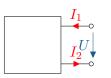
Zweipol	Schaltzeichen	
ideale Spannungsquelle	$\bigcup U_0$	
ideale Stromquelle		
Kondensator (Kapazität)		
ohmscher Widerstand		
Spule (Induktivität)	-	

Lernziele: Zweipole und Zählpfeilsysteme

Lernziele: Zweipole und Zählpfeilsysteme


Die Studierenden können

- den Begriff des Zweipols erläutern sowie gängige Zweipole nennen und deren Schaltsymbole verwenden
- das Erzeuger- sowie Verbraucherzählpfeilsystem erläutern und entsprechend der Konventionen anwenden
- die zentralen Elemente des Grundstromkreises erläutern und die Zusammenhänge zwischen diesen erkennen


Zweipole

Allgemein:

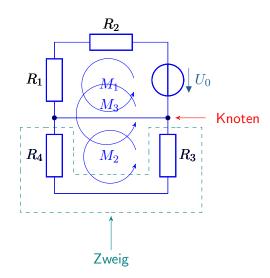
- Zwei äußere Anschlüsse
- lacksquare Klemmströme I_1 und I_2 sind gleich groß $ig(I_1=I_2=Iig)$
- ► Klemmverhalten (Verhältnis von *I* und *U*)
- Reale Baumaße, Materialeigenschaften,
 Feldstärkenverteilung im Bauteil werden vernachlässigt

Passiver Zweipol: Enthält keine Quellen, sondern ausschließlich Widerstände, Kondensatoren, Spulen...

Zählpfeilsysteme

Zählpfeilrichtung theoretisch beliebig, jedoch Konventionen:

- Verbraucher-Zählpfeilsytem (VPS): Strom und Spannung gleichsinnig (passive Zweipole, z.B. Widerständen)
- ► Erzeuger-Zählpfeilsystem (EPS): Strom und Spannung **entgegengesetzt** (aktive Zweipole, z.B. Spannungsquellen)


Zählpfeilsystem	Erzeugte Leistung	Verbrauchte Leistung	Zählpfeile am Verbraucher
VPS	P = -UI	P = UI > 0	\overline{U}
EPS	P = UI > 0	P = -UI	\overline{U}

Der Grundstromkreis

Die wichtigsten Begriffe sind in der Abbildung dargestellt:

- idealsierte Zweipole bilden Zweige des Netzwerks
- Verbindung der einzelnen Zweige über Knoten K_n
- **P** geschlossene Kette von Zweigen bildet **Masche** M_n

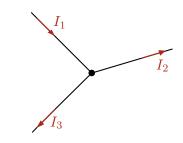
Wie teilen sich Strom und Spannung in einem Netzwerk auf?

Lernziele: Kirchhoffsche Regeln

Die Studierenden können

- die Kernaussagen der Kirchhoffschen Regeln wiedergeben
- b die Kirchhoffschen Regeln auf einfache Widerstandsnetzwerke anwenden

Knotenregel I (1. Kirchhoffsche Regel)

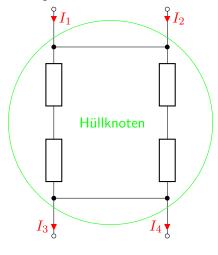

Summe zufließender Ströme

Summe abfließender Ströme

$$\sum I_{\mathrm{zu}} = \sum I_{\mathrm{ab}}$$

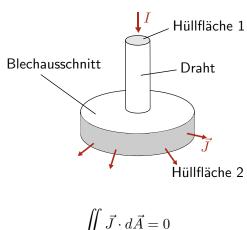
Alternativ: zufließende Ströme positiv, abfließende Ströme negativ zählen:

$$\sum_{k=1}^{n} I_k = 0$$



$$I_1 = I_2 + I_3$$

$$I_1 - I_2 - I_3 = 0$$

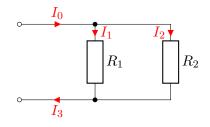

Knotenregel II

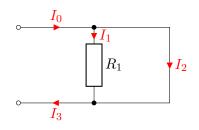
Anwendung auf Hüllknoten:

$$I_1 + I_2 - I_3 - I_4 = 0$$

Anwendung auf geometrische Strukturen:

$$\iint\limits_{A} \vec{J} \cdot d\vec{A} = 0$$


Beispiel: Parallelschaltung von Widerständen

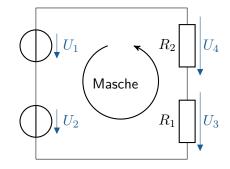

Bei der Parallelschaltung teilen sich die Ströme an den gemeinsamen Knoten auf. Wie groß ist der Strom I_3 ?

$$I_0 - I_1 - I_2 = 0$$

 $I_0 = I_1 + I_2$
 $I_1 + I_2 = I_3$
 $\rightarrow I_3 = I_0$

Ein Widerstand wird durch eine leitende Verbindung ersetzt. Wie groß ist der Strom I_2 ?

$$\begin{split} I_0 &= I_1 + I_2 \\ U_2 &= R_2 \cdot I_2 = 0 \cdot I_2 \\ U_1 &= R_1 \cdot I_1 \stackrel{!}{=} U_2 = 0 \\ &\rightarrow I_1 = 0 \\ &\rightarrow I_2 = I_0 = I_3 \end{split}$$


Maschenregel (2. Kirchhoffscher Satz)

Bei geschlossenem Maschenumlauf:

Summe der Spannungsquellen

Spannungssumme an Verbrauchern

Oder:

Bei geschlossenem Maschenumlauf Teilspannung vorzeichenrichtig aufsummieren.

$$U_1 + U_2 = U_3 + U_4$$
$$U_1 + U_2 - U_3 - U_4 = 0$$

Allgemeine Beschreibung nach den Maxwell Gleichungen:

$$\oint_s \vec{E} d\vec{s} = 0$$

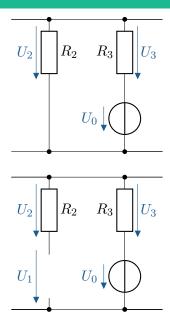
Beispiel: Reihenschaltung von Widerständen

Bei der Reihenschaltung addieren sich die Spannungen zu einer Gesamtspannung auf. Wie groß ist die Spannung U_0 ?

$$U_2 - U_0 - U_3 = 0$$

 $\to U_0 = U_2 - U_3$

Eine Verbindung wird unterbrochen. Wie groß ist die Spannung U_1 an der Unterbrechungsstelle?


$$U_2 + U_1 - U_0 - U_3 = 0$$

$$U_2 = I_2 \cdot R_2$$

$$\to I_2 = 0$$

$$\to U_2 = 0$$

$$U_1 = U_0 + U_3$$

Lernziele: Einfache Gleichstromsnetzwerke

Lernziele: Einfache Widerstandsnetzwerke

Die Studierenden können

- Teilschaltungen in gleichstromnetzwerken identifizieren
- Widerstandsnetzwerke vereinfachen und zusammenfassen
- Kurzschluss- sowie Leerlaufdaten bestimmen
- Überlagerungsverfahren anwenden

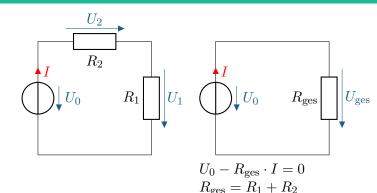
Reihenschaltung von Widerständen

Maschenregel:

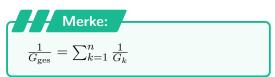
$$U_0 - U_1 - U_2 = 0$$

Ohmsches Gesetz:

$$U_1 = R_1 \cdot I \qquad U_2 = R_2 \cdot I$$

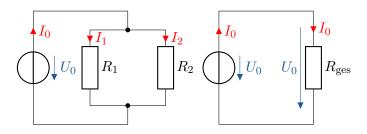

Der Strom *I* fließt durch alle Bauelemente:

$$U_0 - R_1 \cdot I - R_2 \cdot I = 0$$


$$U_0 - (R_1 + R_2) \cdot I = 0$$

Gesamtwiderstand einer Reihenschaltung von Widerständen:

Gesamtleitwert einer Reihenschaltung von Widerständen:



Parallelschaltung von Widerständen

Maschenregel: $U_{\rm R1}=U_{\rm R2}=U_0$ Knotenregel: $I_0-I_1-I_2=0$ Ohmsches Gesetz: $I_1=\frac{U_0}{R_1}$

$$I_0 - \frac{U_0}{R_1} - \frac{U_0}{R_2} = 0$$

$$I_0 - \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \cdot U_0 = 0$$

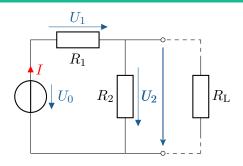
Merke:

$$\frac{1}{R_{\text{ges}}} = \sum_{k=1}^{n} \frac{1}{R_k}$$

$$G_{\text{ges}} = \sum_{k=1}^{n} G_k$$

Spannungsteiler in Widerstandsnetzwerken

Reihenschaltung teilt Spannung U_0 auf, Strom in allen Bauteilen identisch


$$I = \frac{U_1}{R_1} = \frac{U_2}{R_2}$$

Reihenschaltung von Widerständen:

$$I = \frac{U_0}{R_1 + R_2}$$

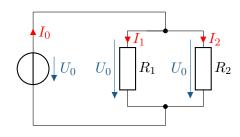
Beziehung zwischen Gesamtspannung U_0 und Teilspannung U_2 :

$$\frac{U_2}{R_2} = \frac{U_0}{R_1 + R_2}$$

gilt nur für **unbelasteten Spannungsteiler** (Belastungsstrom=0)! Belastungsfall: R_2 und $R_{\rm L}$ zusammenfassen!

Stromteiler in Widerstandsnetzwerken

Parallelschaltung teilt Strom I_0 auf, Spannung an allen Bauteilen identisch


$$U_0 = I_1 \cdot R_1 = I_2 \cdot R_2$$

Parallelschaltung von Widerständen:

$$U_0 = I_0 \cdot R_{\rm ges}$$

$$I_2 \cdot R_2 = I_0 \cdot R_{\text{ges}}$$

$$I_2 \cdot R_2 = I_0 \cdot \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_{\text{ges}} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

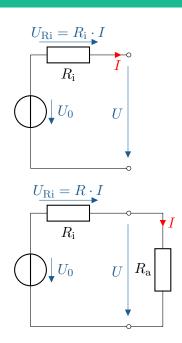
$$I_2 = I_0 \cdot \frac{R_1}{R_1 + R_2}$$

Die reale Spannungsquelle

Besitzt Innenwiderstand R_{i}

Unbelastete reale Spannungsquelle:

$$I = 0 \to U_{\rm Ri} = 0$$
$$U = U_0$$


Belastete reale Spannungsquelle:

$$I > 0 \rightarrow U_{\rm Ri} > 0$$

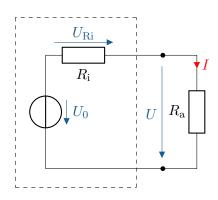
$$U = U_0 - U_{Ri} < U_0$$

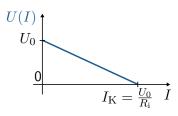
Innenwiderstand möglichst klein:

$$U_0 >> I \cdot R_i$$

Die Ersatzspannungsquelle

Jeder **aktive** Zweipol als **Ersatzspannungsquelle** darstellbar


Ideale Spannungsquelle U_0 und Innenwiderstand R_i

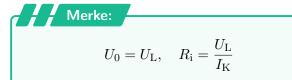

$$U_0 = U_{Ri} + U$$

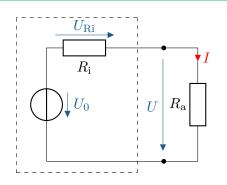
$$U_0 = I \cdot R_i + U$$

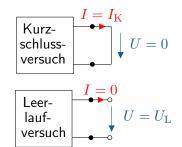
Verringerung der Spannung am Ausgang:

$$U = U_0 - I \cdot R_i$$

Besondere Betriebszustände der Ersatzspannungsquelle


Ermittlung von U_0 und R_i über Kurzschluss- und Leerlaufversuch:


Kurzschluss:
$$R_a=0$$
, $I=I_{
m K}=$ Kurzschlussstrom $U=0
ightarrow U_0=U_{
m Ri}$


$$U_{\mathrm{Ri}} = R_{\mathrm{i}} \cdot I_{\mathrm{K}} \rightarrow I_{\mathrm{K}} = \frac{U_{\mathrm{0}}}{R_{\mathrm{i}}}$$

Leerlauf: $R_{\rm a}
ightarrow \infty$, $U = U_{\rm L} =$ Leerlaufspannung

$$I = 0 \rightarrow U_{\text{Ri}} = R_{\text{i}} \cdot 0 = 0$$
$$U_{\text{L}} = U_{0}$$

Die reale Stromquelle

Ideale Stromquelle:

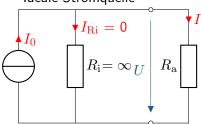
Innenwiderstand unendlich:

$$I_{\rm Ri} = 0$$

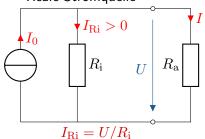
$$I = I_0$$

Reale Stromquelle:

Besitzt Innenwiderstand $R_{\rm i} < \infty \, \Omega$


$$I_{\rm Ri} > 0$$

$$I = I_0 - I_{Ri} < I_0$$


Innenwiderstand möglichst groß:

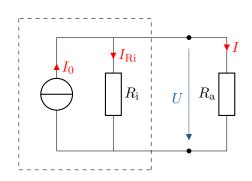
$$I_0 >> U/R_i$$

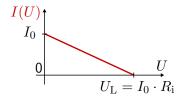
Ideale Stromquelle

Reale Stromquelle

Die Ersatzstromquelle

Jeder **aktive** Zweipol als **Ersatzstromquelle** darstellbar

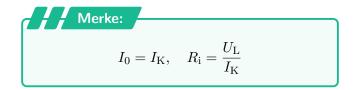

Ideale Stromquelle \mathcal{I}_0 mit Innenwiderstand \mathcal{R}_i

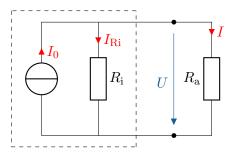

$$I_0 = I_{Ri} + I$$

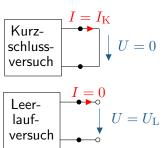
$$I_0 = \frac{U}{R_i} + I$$

Verringerung des Ausgangsstrom abh. von U:

$$I = I_0 - \frac{U}{R_i}$$




Besondere Betriebszustände der Ersatzstromquelle


Ermittlung von I_0 und $R_{\rm i}$ über Kurzschluss- und Leerlaufversuch:

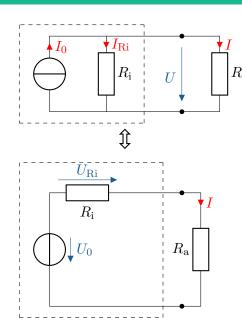
Kurzschluss:
$$R_a=0$$
, $I=I_{
m K}=$ Kurzschlussstrom $U=0
ightarrow I_{
m Ri}=0$ $I_{
m K}=I_0$

Leerlauf:
$$R_{
m a} o\infty$$
 , $U=U_{
m L}=$ Leerlaufspannung $I=0 o I_{
m Ri}=I_0$ $U_{
m L}=R_{
m i}\cdot I_0$

Umwandlung von Spannungs- und Stromquellen

Innenwiderstand $R_{\rm i}$ bleibt identisch, Schaltung ändert sich

Leerlaufspannung und **Kurzschlussstrom** auf andere Quelle umrechnen:


Stromquelle in Spannungsquelle:

$$U_0 = I_0 \cdot R_i$$

Spannungsquelle in Stromquelle:

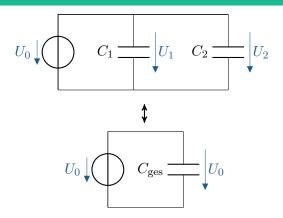
$$I_0 = \frac{U_0}{R_i}$$

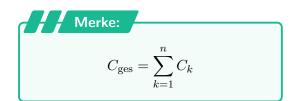
Zählpfeile der Quellen sind entgegengesetzt gerichtet!

Parallelschaltung von Kapazitäten

$\textbf{Parallelschaltung} \colon \mathsf{Spannung} \ \mathsf{aller}$

Kapazitäten identisch:


$$U_0 = U_1 = U_2$$


Ladung pro Kondensator:

$$Q_k = C_k \cdot U_k, \quad Q_{\text{ges}} = C_{\text{ges}} \cdot U_0$$

Gesamtladung $Q_{\rm ges}$:

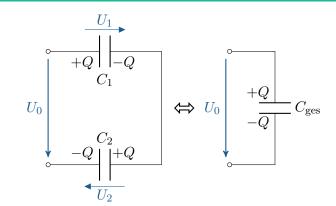
$$Q_{\text{ges}} = Q_1 + Q_2 = C_1 \cdot U_0 + C_2 \cdot U_0$$
$$Q_{\text{ges}} = (C_1 + C_2) \cdot U_0$$
$$\rightarrow C_1 + C_2 = C_{\text{ges}}$$

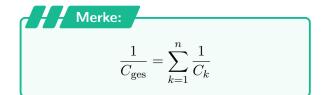
Reihenschaltung von Kapazitäten

Reihenschaltung: alle Kondensatoren besitzen **gleiche Ladung** Q!

Kondensator-Grundgleichung:

$$Q = C \cdot U$$


$$U_1 = \frac{Q}{C_1}, \quad U_2 = \frac{Q}{C_2}$$

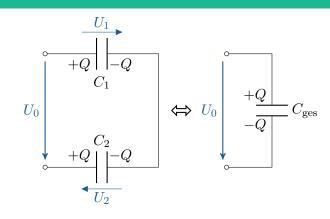

Reihenschaltung aus Kapazitäten:

$$U_0 = U_1 + U_2 = \left(\frac{1}{C_1} + \frac{1}{C_2}\right) \cdot Q$$

Ersatzschaltbild:

$$U_0 = \frac{1}{C_{\text{ges}}} \cdot Q$$

Spannungsteiler an Kapazitäten


$$Q_1 = Q_2 = Q_{\text{ges}} = Q$$

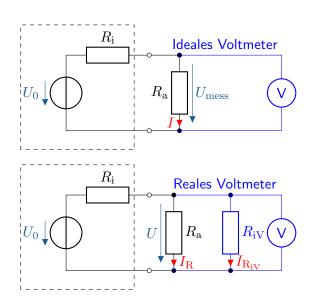
$$C_{\text{ges}} = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

$$U_0 = \frac{1}{C_{\text{ges}}} \cdot Q \to Q = C_{\text{ges}} \cdot U_0$$

$$U_1 = \frac{Q}{C_1} \to U_1 = \frac{C_{\text{ges}}}{C_1} \cdot U_0$$

$$U_2 = \frac{Q}{C_2} \to U_2 = \frac{C_{\text{ges}}}{C_2} \cdot U_0$$

Merke:

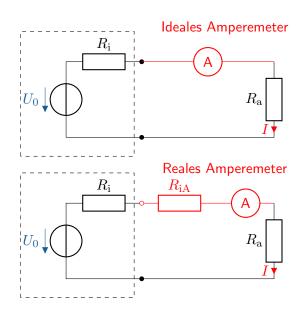

$$U_1 = \frac{C_2}{C_1 + C_2} \cdot U_0, \quad U_2 = \frac{C_1}{C_1 + C_2} \cdot U_0$$

Spannungsmessung im Gleichstromkreis

Spannungsmessung im Gleichstromkreis:

- Messung mit Voltmeter
- Messgeräts parallel zum Bauteil (keine Unterbrechung des Stromkreises notwendig)
- reales Voltmeter: Innenwiderstand $R_{iV} >> R_{mess}$
- um Innenwiderstand korrigierte Messspannung $U_{\rm korr}$:

$$U_{\text{korr}} = U \cdot \left(1 + \frac{R_{\text{i}}||R_{\text{a}}}{R_{\text{iV}}} \right)$$



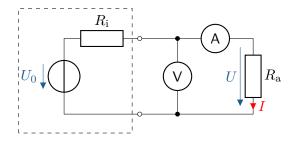
Strommessung im Gleichstromkreis

Strommessung im Gleichstromkreis:

- Messung mit Amperemeter
- Messgerät in Reihe zum Bauteil (Stromkreis auftrennen!)
- reales Amperemeter: Innenwiderstand $R_{\rm iA} << R_{\rm a}$
- Um den Innenwiderstand R_{iA} korrigierte Messtromstärke I_{korr}:

$$I_{\rm korr} = I \cdot \left(1 + \frac{R_{\rm iA}}{R_{\rm i} + R_{\rm a}}\right)$$

Strom- und spannungsrichtiges Messen I


Bei **gleichzeitiger** Messung von Strom und Spannung:

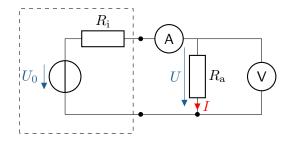
gegenseitige Beeinflussung der Innenwiderstände der Messgeräte

Stromrichtige Messung:

- ▶ höherer Fokus auf Stromstärke
- $V_{\text{mess}} = U_{\text{Ra}} + U_{\text{Amperemeter}}$
- Verwendung, wenn gilt:

$$R_{\rm iA} \ll R_{\rm a}$$

Strom- und spannungsrichtiges Messen II


Spannungsrichtige Messung:

- höherer Fokus auf Spannung
- $I_{\text{mess}} = I_{\text{Ra}} + I_{\text{Voltmeter}}$
- ► Verwendung, wenn gilt:

$$R_{\rm iV} \gg R_{\rm a}$$

Bei nicht eindeutigen Verhältnissen:

- stromrichtiges Messen für $R_{\rm a} > \sqrt{R_{\rm iA} \cdot R_{\rm iV}}$
- > spannungsrichtiges Messen für $R_{\rm a} < \sqrt{R_{\rm iA} \cdot R_{\rm iV}}$

